Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shih-Sheng Sun,^a Peter Y. Zavalij^b* and Alistair J. Lees^a

^aDepartment of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902-6016, USA, and ^bInstitute for Materials Research and Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902-6016, USA

Correspondence e-mail: zavalij@binghamton.edu

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.042 wR factor = 0.100 Data-to-parameter ratio = 23.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Acetonitriletricarbonyl(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)rhenium(I) hexafluorophosphate

The novel title compound, $[\text{Re}(\text{C}_{26}\text{H}_{20}\text{N}_2)(\text{C}_2\text{H}_3\text{N})(\text{CO})_3]$ -(PF₆), has been synthesized and found to crystallize in the monoclinic system with space group $P2_1/n$. The molecular ionic structure consists of an Re¹ complex cation and a PF₆⁻ anion, where the Re atom is octahedrally coordinated by chelating dimethyldiphenylphenanthroline, three carbonyl groups and acetonitrile.

Received 13 February 2001 Accepted 19 February 2001 Online 28 February 2001

Comment

It is well known (Sun & Lees, 2000) that rhenium(I) readily forms tricarbonyl molecular complexes of the general formula (L)Re(CO)₃X, where L is chelating bipyridyl ligand, and X is Cl or Br. Substitution of the halogen with a neutral molecule such as CH₃CN leads to formation of a complex cation and an additional anion is needed for charge compensation.

A new molecular ionic compound has been prepared by reacting BrRe(CO)₃(DMDPP) and AgPF₆ in refluxing CH₃CN (DMDPP is 2,9-dimethyl-4,7-diphenyl-1,10-phenan-throline, $C_{26}H_{20}N_2$). The crystal structure of this molecular ionic compound, acetonitriletricarbonyl(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)rhenium(I) hexafluorophosphate, (I), has been determined. The Re atom is octahedrally coordinated and the base of the octahedron is formed by two N atoms (N2 and N3) of the chelating DMDPP ligand and C atoms (C1 and C2) of two carbonyl groups, whereas the third carbonyl ligand (C3) and acetonitrile (N1) form apices (Fig. 1). This octahedron is slightly distorted (see N-Re-C angles in Table 1) due to the chelating DMDPP ligand. However, C3, N1 and Re are practically collinear [N1-Re-C3 is 179.1 (2)°].

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved Each individual ring in the DMDPP ligand lies in a plane with deviations of less than 0.01 Å. This deviation is tripled

Figure 1

View of (I) with displacement ellipsoids at the 50% probability level.

when the three rings of phenanthroline are taken together, but even then this does not exceed 0.03 Å. The two phenyl groups, C10-C15 and C26-C31, are tilted from the phenanthroline plane by 64.7 (2) and 56.1 (2)°, respectively. The ligand has only a twofold axis as the local symmetry element because of this tilt.

The Re cations and PF_6^- anions are held together by weak $C-H\cdots F$ hydrogen bonds, as listed in Table 2.

Experimental

The compound (DMDPP)Re(CO)₃(CH₃CN)(PF₆) was prepared by modifying the literature method of Caspar & Meyer (1983). To a 250 ml flask containing (DMDPP)Re(CO)₃Br (500 mg, 0.7 mmol) and AgPF₆ (215 mg, 0.85 mmol) was added 100 ml anhydrous CH₃CN. The resulting mixture was refluxed under argon for 8 h. The solvent was filtered under argon to remove AgBr precipitate and the filtrate was evaporated to dryness under reduced pressure. The crude product was recrystallized from CH₃CN/ether to afford a brightyellow solid in 92% yield. IR [ν (C=O), CH₃CN, cm⁻¹]: 2038, 1937. ¹H NMR (DMSO-*d*₆): 8.23 (*s*, 2H, H5,6-phen), 8.05 (*s*, 2H, H3,8phen), 7.70–7.63 (*m*, 10H, Ph), 3.33 (*s*, 6H, CH₃), 2.28 (*s*, 3H, CH₃CN). ¹³C NMR (DMSO-*d*₆): 196.0, 191.4, 163.4, 151.2, 147.6, 135.2, 129.8, 129.6, 129.1, 128.9, 127.0, 124.6, 118.0, 30.4, 1.06. Single crystals were grown by layering an acetonitrile solution of the complex with ether.

Crystal data

$[\text{Re}(\text{C}_{26}\text{H}_{20}\text{N}_2)(\text{C}_2\text{H}_3\text{N})(\text{CO})_3]$ -	
(PF_6)	
$M_r = 816.7$	
Monoclinic, $P2_1/n$	
a = 10.2648 (5) Å	
b = 23.4667 (11) Å	
c = 13.2040 (6) Å	
$\beta = 103.847 (1)^{\circ}$	
V = 3088.2 (3) Å ³	
Z = 4	

 $D_x = 1.757 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 7718 reflections $\theta = 4.4-54.6^{\circ}$ $\mu = 4.06 \text{ mm}^{-1}$ T = 293 (2) KPrism, yellow $0.20 \times 0.18 \times 0.13 \text{ mm}$

Data collection

CCD Smart Apex diffractometer ω scans Absorption correction: ψ scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.46, T_{max} = 0.59$ 26 336 measured reflections 9420 independent reflections

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.042$ $w = 1/[\sigma^2(F_o^2) + (0.0464P)^2]$ $wR(F^2) = 0.100$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.93 $(\Delta/\sigma)_{max} < 0.001$ 9420 reflections $\Delta\rho_{max} = 1.03$ e Å $^{-3}$ 409 parameters $\Delta\rho_{min} = -0.50$ e Å $^{-3}$

6049 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.047$

 $\theta_{\rm max} = 30.6^{\circ}$

 $h=-13\rightarrow14$

 $k = -25 \rightarrow 33$

 $l = -11 \rightarrow 18$

Intensity decay: none

 Table 1

 Selected geometric parameters (Å, °).

Re1-C3	1.899 (6)	C11-C12	1.395 (7)
Re1-C2	1.904 (5)	C12-C13	1.355 (8)
Re1-C1	1.916 (5)	C13-C14	1.368 (7)
Re1-N1	2.125 (4)	C14-C15	1.358 (7)
Re1-N2	2.211 (3)	N2-C16	1.387 (5)
Re1-N3	2.215 (3)	C16-C17	1.392 (5)
P1-F1	1.549 (4)	C16-C21	1.442 (5)
P1-F2	1.536 (4)	C17-C18	1.429 (6)
P1-F3	1.477 (5)	C18-C19	1.343 (6)
P1-F4	1.521 (5)	C19-C20	1.420 (6)
P1-F5	1.558 (4)	C20-C21	1.410 (5)
P1-F6	1.537 (5)	C20-C25	1.412 (6)
C1-O1	1.148 (6)	C21-N3	1.371 (5)
C2-O2	1.156 (6)	N3-C23	1.348 (5)
C3-O3	1.152 (6)	C22-C23	1.486 (6)
N1-C4	1.132 (6)	C23-C24	1.382 (5)
C4-C5	1.450 (7)	C24-C25	1.367 (6)
C6-C7	1.482 (6)	C25-C26	1.484 (6)
C7-N2	1.345 (5)	C26-C27	1.381 (7)
C7-C8	1.394 (6)	C26-C31	1.390 (6)
C8-C9	1.360 (6)	C27-C28	1.384 (7)
C9-C17	1.419 (6)	C28-C29	1.366 (9)
C9-C10	1.480 (6)	C29-C30	1.371 (8)
C10-C11	1.377 (6)	C30-C31	1.387 (6)
C10-C15	1.384 (7)		
C3-Re1-N1	179.1 (2)	F6-P1-F5	176.5 (3)
C2-Re1-N2	174.82 (19)	O1-C1-Re1	174.8 (5)
C1-Re1-N3	174.91 (18)	O2-C2-Re1	175.5 (5)
N2-Re1-N3	75.66 (12)	O3-C3-Re1	175.3 (5)
F3-P1-F4	178.8 (5)	C4-N1-Re1	173.8 (4)
F2-P1-F1	178.4 (3)	N1-C4-C5	179.2 (5)
C14 C15 C26 C27	51 4 (7)	CP C0 C10 C11	(5.0.())
$C_{24} - C_{25} - C_{26} - C_{27}$	-51.4 (7)	C8-C9-C10-C11	-65.9 (6)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5B\cdots F1^i$	0.960 (6)	2.337 (5)	3.226 (8)	153.7 (3)
C11-H11···F3	0.932 (5)	2.447 (8)	3.377 (9)	176.2 (4)
$C24-H24\cdots F2^{ii}$	0.929 (4)	2.474 (5)	3.280 (6)	145.1 (3)

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) x, y, 1 + z.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

References

- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caspar, J. & Meyer, T. J. (1983). J. Phys. Chem. 87, 952-957.
- Sun, S. S. & Lees, A. J. (2000). J. Am. Chem. Soc. 122, 8956-8967.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.